

Ministry of Economic Affairs and Climate Policy

Energy in transition

The subsurface at our service

Issues for today

- 1. Is there a role for the subsurface in the Energy transition?
- 2. What is that role?
- 3. What are the social challenges using the subsurface in that new role

Reduction of Green house gas emissions

Energy saving

Role of subsurface

Subsurface energy saving

Aquifer Thermal Energy Storage

www.duurzaaminvesteren.nl

CO2 Storage

Role of subsurface

CO2 capture and storage

Sustainable sources

Role of subsurface

Geothermal

Shallow systems and ATES Till approx. 100 m

Deep geothermal 1.000 - 4.000 m (40°C - 120°C)

Ultra-deep geothermal Deeper than 4.000 m (>120°C)

2018

2025

2030

2050

Nr of doublets

7

1-2 nieuwe per

jaar

10 nieuwe per jaar

75

175

20 nieuwe per jaar 700

25 nieuwe per jaar

Nr of houses connected

140k

5 PJ

570k

20 PJ

3,8m

135 PJ

Spatial claim

10

17 soccerfields

50

Efteling

380

110

Volendam

450

Centrum Rotterdam

Employability

direct1

indirect2

240

70

1320

170 940

2400

3400

700

1000

1700

2400

1 Banen in de markt; exclusief extra FTE bij overheid niet meegenomen 2 Indirecte FTE's zijn support functies, adviseurs, leveranciers, etc.; ~2.5 indirecte FTE per directe FTE aangenomen

Sustainable energy and security of supply

Role of subsurface

Variable energy demand

Future: variable energy supply (renewables)

Flexibility from storage

Storage tanks Surface Electrical LNG **BATTERIES (DIVERSE SOORTEN)** HYDROGEN **FLY WHEELS** OIL / GASOIL CAPACITORS LIQUID AIR SUPERCONDUCTIVE MAGNETS HEAT (Elevated*) Lakes **Aquifers Island Basins** HOT/COLD WATER **NATURAL GAS PUMP ACCUMULATION HYDROGEN** (SURFACE WATER) COMPRESSED AIR/NITROGEN °C CO₂ **BRINE** Mines, Tunnels, Cavities **Depleted Oil** HOT/COLD WATER PUMP ACCUMULATION (WATER/BRINE) & Gas Fields RADIOACTIVE & OTHER WASTE (NATURAL GAS *) **NATURAL GAS** (COMPRESSED AIR/NITROGEN *) HYDROGEN STIKSTOF COMPRESSED AIR/NITROGEN Salt Caverns CO₂ PRODUCTION WATER / BRINE NATURAL GAS HYDROGEN COMPRESSED AIR/NITROGEN GASOIL

BRINE HELIUM

Salt caverns

Natural gas: Hydrogen: ca. 1 - 2 weeks ca. 3-4 GW

10 GW

1 GW

10 MW

1 MW

ca. 1 GW

Example storage 1 day wind: 3-4 caverns (H_2)

Gas fields

Hydrogen: ca. 3 – 10 GW

Natural gas: ca. 10 – 30GW

ca. 50 - 100 days

Hydrogen

Climate goals and renewables Clean, secure and affordable energy

CCS:

Significant emission reduction from fossil power plants & industry

Geothermal (production and storage):

Heating demand for green houses / residential Efficiency in local heating grids Renewable electricity generation

Energy storage:

Green gas / Biogas / Hydrogen / Compressed Air: Secure supply for electricity and heating demand (e.g. seasonal) Balance generation from variable renewable sources Conversion of energy (e.g. power to hydrogen)

Natural gas production:

Secure heating / electricity demand Cleaner than coal

Safety and public acceptance

Seismicity

Are there critically stressed faults? What are the impacts of seismic events?

Subsidence and collapse

What are the effects of developing many salt caverns? What are the long term impacts?

Leakage and migration

Is the containment of hydrogen guaranteed? Is there a risk of leakage along the wells?

Facility risks

What are the surface risks (e.g. explosions)? Where can it safely be deployed?

The new reality

Symbols and perception stronger than facts

Scientific reports loosing value in public debate

The transition

Traditional role

Future role

