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Objectives of the system integration

* Integrate downstream and upstream processes into a single
system and develop optimisation strategies for energy and metals
production

Technical
components
identified
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Conceptual framework for CHPM power
plant

* Dealing with fluids with high concentration of metals.

* Want to combine metal extraction from the fluid with energy
production, both power generation in a conventional binary power plant
and direct heat uses of the geothermal energy

* In the system integration we convert outputs of the project work on
individual metal extraction and power generation components into an
overall architecture design of the envisioned CHPM facility.

* Create a model framework based on component level models which
enables linking downstream and upstream geothermal engineering
subsystems.
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Approach

* Develop a mathematical model of the overall system, including all main
components.

* The overall model is made up of elements or sub-models describing the
behaviour of each component (component models).

* A set of design parameters for the overall system is defined.

* For each component within the system a mathematical description of
what happens within the component is developed.

* Each component has an input from the previous component in the chain
and an output that will feed the following component.

* The overall simulation is used to study different scenarios and perform
sensitivity analysis.
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Component model

Inflow/outflow of mass/energy

Component Component Component

n-1 N n+1

Set of relevant input Set of output

parameters (A,): parameters A ,; =f(A)

T: temperature fis a function that

P: pressure describes the relationsship
m: flow rate between the input and

M: concentration output parameters of

S: salinity component n

etc.
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Examples of Monte Carlo modelling
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Reservoir and production/reinjection wells

* In principle, the geothermal reservoir as well as the production and
reinjection wells are components that could be described mathematically in
a similar way as other components in the system.

* The current system model does not include separate models for these
components, but only the surface components.

* The main reason for this is the complexity of these components. They can be
added in further studies if desired.

* The current system model uses fluid properties at the production wellhead
as input. These are based on reservoir properties from known geothermal
fields.
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Electrolytic metal recovery

* Uses electrochemical reactions to deposit
metals

* Designed to perform at high temperatures
and high pressures up to 200 bar and
300°C

* Experiments performed in small batch
reactors

* The electrolytic metal deposition
technology is implemented in a flow-
through reactor that can be readily
integrated in a geothermal loop with a
high throughput (150 m3/h or more).
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Binary power plant

Turbo-alternator
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Combined heat and power generation (CHP)

8.4 MW, for direct heat uses
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Gas diffusion electro-precipitation and
electro-crystallisation

* The GDEx can remove metal and
metalloid ions from an aqueous
solution, transforming them into
an amorphous or crystalline (nano)
precipitate which can be easily
recovered by sedimentation.

* The process uses porous activated
carbon-based gas-diffusion

Gas
phase
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Modelling of the GDEx component (1)

* Based on the results of laboratory measurements of the energy usage
and ratios of recovered metals from brine for different values of Mg and
Ca concentrations, salinity (S), working electrode potential (Ewe),
temperature (T), and Ph.

* Most samples simulated with emphasis on studying Li and Al recovery
for different parameters and brine compositions.

* The energy input used per kg of recovered metals and ratios of metal
recovery are modelled via linear regression analysis using the
StatsModel package in Python.

* The resulting model is described by the following equation:

E. =exp(A+B-Mg+ C-Ca+D-Ph+ES+FT+G-Ewe)
where A, B, C, D, E, F, and G are the model parameters that are
estimated from the regression analysis.
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Modelling of the GDEx component (2)
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* The flow rate of the experiments that are used to calibrate the model
was 40 ml/min or around 6.6x10* L/s. The flow that a typical
geothermal power plant consumes can be five orders of magnitude
larger (100 L/s). Therefore, the experimental results are extrapolated
linearly by a factor in the order of magnitude of 10° in the system model.
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Modelling of the GDEx component (3)
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Salt gradient power (1)
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* The reverse Salt Gradient component is HIGH  LOW  HIGH
composed of compartments separated by
Cation exchange Membrane (CM) and Anion
exchange Membranes (AM).

* Through these compartments brine solution
(HIGH) and low salinity solution (LOW) flow.
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AM

. ; Comp 2 Comp 3
* The concentration gradients across the

membranes cause the ions (Na+ and Cl-) to
move in opposite directions, thus creating
potential difference.
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Salt gradient power (2)

* Salt Gradient Power (SGP) technology consists of extraction of the
“osmotic energy” from two salt solutions with different salt
concentration. Constant supply of two water streams with a salinity
difference is necessary.

* The model calculates power output, number of stacks in series and total
AEM/CEM (anion/cation exchange) membrane surface required at
maximal power output.

* The model will calculate a series of stacks according to the required
desalination and given the stack length ‘I. For each stack an optimal load
will be configured to generate maximum power

* The model then returns some essential values of each stack (outlet
concentrations, max power density and effective desalination) and some
overall number (e.g. max Power output, total cell pair surface, average
power density of all stacks combined) in the dialogue box, e.g.:
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Salt gradient power — electricity output
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Set of parameters for the integrated system

o Temperature: T [°C]

o Pressure: P [bar]
o Acitity/basitity: pH [-]

o Redox condition: Rd [eH]
o Oxygen fugacity: fO, [bar]
o Carbon dioxide: CO, [bar]
o Conductivity: si [S/m]
o Flow rate: q [L/s]
o Salinity: S [g/U
o Oxidizing compounds: O, [mg/L]

o Concentrated suspended solids: Css [mg/L]
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Examples of metal content in geothermal brine
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M. Hannington et al, “Gold enrichment in active geothermal systems by accumulating colloidal suspensions”, Nature Geoscience volume 9, pages 299-302 (2016)
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Demonstration of a possible outcome - Landau

Based on geothermal fluid from Landau, Germany

Q: 100 L/s

T:150°C

P: 4,7 bar

S:97.5g/L Li: 75 mg/L Li: 24.6 mg/L (50.5 extr.)

LI: 150 mg/L Zn: 1.85 mg/L T: 70°C T: 50°C Zn: 1.12 mg/L (0.73 extr.)

Zn:3.7 mg/L Cd: 0.015 mg/L El prod: Heat prod: Cd: 0.074 mg/L (0.0076 extr.) El prod:
Cd: 0.03 mg/L El. cons: 0.4 MW, 3.66 MW, 8.36 MW,;, El. cons: 0.25 MW, 0.26 MW,

Electrolytic Gas diffusion Salt
metal metal extr- > gradient
recovery action (GDEXx) power

Total metal extraction;
Li: 125.5mg/L (45.2 kg/h)
Zn:2.58 mg/L  (0.93 kg/h)
Cd: 0.0224 mg/L (0.008 kg/h) \
Net el. prod: 3.3 MW,

<

CHPM2030§



Demonstration of a possible outcome - Reykjanes

Based on geothermal fluid from Reykjanes, Iceland

Q: 100 L/s

T: 150°C

P:4,7 bar

S:35g/L Li: 3.28 mg/L Li: 0.359 mg/L (2.92 extr.)

LI: 6.55 mg/L Ag: 0.0338 mg/I Ag:0.0167 mg/L (0.0171 extr.)

Ag: 0.0676 mg/L Co: 0.00665 mg/L T: 70°C T: 50°C Co: mg/L0.00335 (0.0033 extr.)

Co:0.0133 mg/L Au: 0.0036 mg/L El prod: Heat prod: Au: 0.00178 mg/L (0.0018 extr.) El prod:
Au: 0,0071 mg/L El. cons: 0.05 MW, 3.77 MW, 8.36 MW, El. cons: 0.043 MW, 0.079 MW,

Salt

Electrolytic Gas diffusion
metal metal extr- > gradient
recovery action (GDEXx) power

Total metal extraction;
Li: 6.2 mg/L (2.2 kg/h)
Ag:0.051 mg/L (0.018 kg/h)
Co:0.010 mg/L (0.004 kg/h) |
Au: 0.0054 mg/l (0.002 kg/h)

Net el. prod: 3.8 MW,
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Demonstration of a possible outcome - Landau

Based on geothermal fluid from Landau, Germany

16 % 84 %
0.097 MW 0.404 MW
25% 50 % 97.5%
2000 2048 MW 0.198 MW : 0.803 MW |
1750 i E i E E Li: 24.6 mg/L (50.5 extr.)
o i I I Zn: 1.12 mg/L (0.73 extr.)
1500 - i i i Cd: 0.074 mg/L (0.0076 extr) El prod:
12504 | | ! El. cons: 0.25 MW, 0.26 MW,
b I I I
S 10004 | | !
Q I | 1
7504 | : : ion Salt
1 I 1 > .
500 { —! ! ! tr gradient
I )EX) power
250 - !
I
0 -
0.0 0.2 0.4 0.6 0.8 1.0

Electricity used by gas diffusion component (C5) [MW]

Iotal metal extraction;

Li: 125.5 mg/L (45.2 kg/h)

Zn: 2.58 mg/L (0.93 kg/h)

Cd: 0.0224 mg/L (0.008 kg/h) ‘
Net el. prod: 3.3 MW,

<

CHPM2030§



Electricity produced by the salt gradient power plant
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Final remarks

* A system integration model has been developed based on statistical
analysis of the system parameters.

* Aim at performing final system integration for the CHPM2030 project
based on already selected scenarios and more complete coponent
models.

* Sensitivity analysis will be performed.

* Topics for improved system integration in the future:
- Include a simple reservoir model, leaching agents, well simulator, etc.
- Study how to upscale results from lab experiments to a pilot plant.

- Include the market aspect and economic feasibility, e.g. balance
between metal and energy production.

_ Etc.
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