
GEOTECHNICAL SURVEYING AND SOIL TESTING FOR SOLAR PROJECTS (PV)

Geology and Energy Transition Delft, 23th May 2019

......

TECSOLGEO LTD

CONTENTS:

- 1. TECSOLGEO, COMPANY, HISTORY
- 2. SOLAR PV INSTALLED EVOLUTION
- 3. SCOPE OF WORKS GEOTECHNICAL AND ELECTRICAL/THERMAL RESISTIVITY SURVEY. WHEN?
 WHY? ADVANTAGES
- 4. GEOTECHNICAL SURVEY GEOTECHNICAL SURVEY FOR SOLAR FARMS
- 5. EQUIPMENTS AND SOIL TESTING DEVICES:

Dynamic Penetration Super Heavy (DPSH)

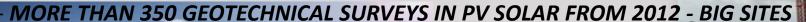
Boreholes (Drilled or Driven)

Dynamic Penetrometer Test – Panda Equipment (penetration and compactation)

Soil sampling and Lab testing

DCP - CBR In situ Testing

Electrical Tomography – Landfill Investigation / Resistivity Testing – Wener Array

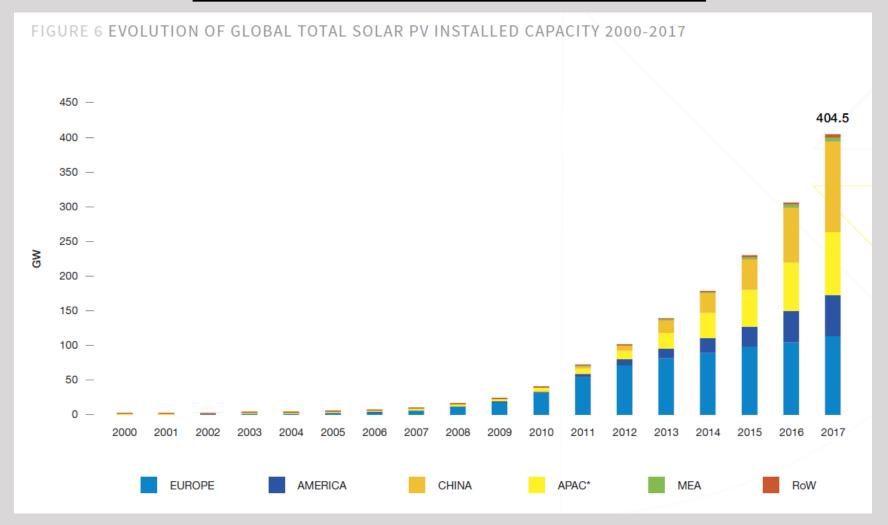

RHO Thermal Resistivity

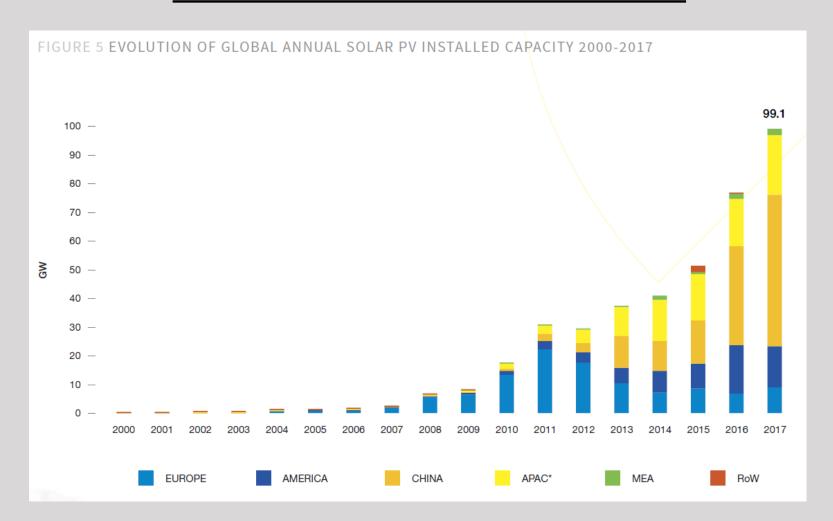
Others: Trial Pits, Corrosivity Tests, Plate Bearing Tests, GPR, ...

TECSOLGEO LTD - HISTORY

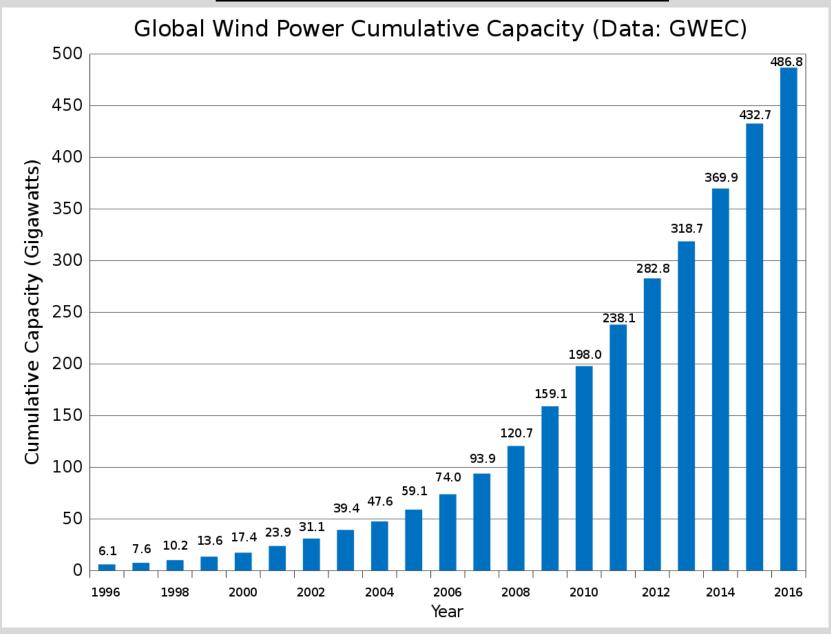
- TECSOLGEO LTD, FOUNDED IN BARCELONA IN 1999
- TECSOLGEO IS OPERATING IN EU and WORLWIDE FROM 2008
- WORLDWIDE EXPERIENCE (Spain, Portugal, Panam, Netherland, Uk, Ireland, Perú, Argentina, Xile, Mexico, Panamà, Caribean, ...)
- OWN EQUIPMENTS , FACILITIES AND TEAM.
- MULTIDISCIPLINARY TEAM (GEOLOGISTS, GEOTECHNICS, SURVEYORS, ENGINEERS,..)
- WIDE EXPERIENCE IN SOIL INVESTIGATION (Geotechnical, soil/water contamination)

<u>Intipampa, Perú – 40 MW</u>




Our biggest Project is located in Argentina -

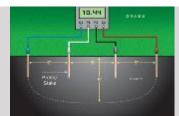
SOLAR PV INSTALLED EVOLUTION


SOLAR PV INSTALLED EVOLUTION

Big and growing market

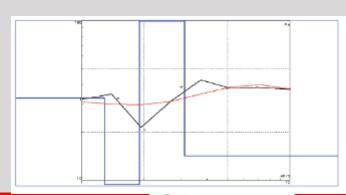
WIND INSTALLED EVOLUTION

SOLAR PV – SCOPE OF WORKS



S=Surface 1 Ha = 2,47 ac	Penetration test		Trial Pit		Soil Sample		CBR		SEV	
0-14 Ha	1,3	Test/Ha (min. 10	0,50	Test/Ha (min. 5)	0,35	Test/Ha (min. 3)	0,50	Test/Ha (min. 6)	0,30	Test/Ha (min. 3)
15-30 Ha	1,1	Test/Ha	0,40	Test/Ha	0,30	Test/Ha	0,40	Test/Ha	0,20	Test/Ha
31-50 ac	0,9	Test/Ha	0,30	Test/Ha	0,25	Test/Ha	0,35	Test/Ha	0,15	Test/Ha
50-100	0,7	Test/Ha	0,25	Test/Ha	0,30	Test/Ha	0,30	Test/Ha	0,15	Test/Ha
>100	0,45	Test/Ha	0,15	Test/Ha	0,18	Test/Ha	0,30	Test/Ha	0,12	Test/Ha
>250	0,35	Test/Ha	0,13	Test/Ha	0,15	Test/Ha	0,25	Test/Ha	0,10	Test/Ha
>400	0,28	Test/Ha	0,12	Test/Ha	0,12	Test/Ha	0,20	Test/Ha	0,08	Test/Ha
>600	0,25	Test/Ha	0,11	Test/Ha	0,10	Test/Ha	0,18	Test/Ha	0,07	Test/Ha

GEOTECHNICAL SURVEY.. WHEN?.. WHY??


CARRIED OUT IN THE RIGHT MOMENT WILL LET SAVE MONEY
BAD GEOTECHNICAL CONTEXT MAY KILL THE PROJECT: ROCK, SOFT SOIL, LANDFILL..
BAD GEOLECTRICAL CONTEXT MAY KILL THE PROJECT: COLD/HOT SITE

GEOTECHNICAL SURVEY INVEST: TIME-AND-MONEY SAVING MATTER

GEOTECHNICAL + ELECTRICAL/THERMAL RESISTIVITY SURVEY → MEAN LESS THAN 0.08 %

TOTAL PROJECT

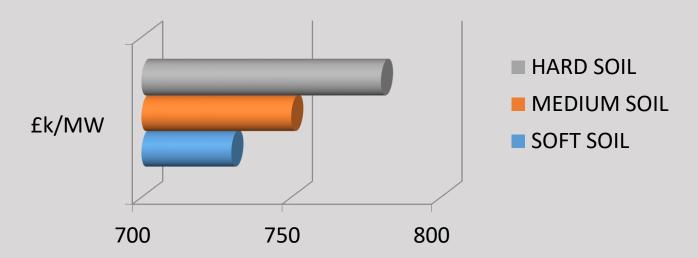
GEOTECHNICAL SURVEY

GEOTECHNICAL SURVEY INVEST: TIME-AND-MONEY SAVING

MATTER

ROCK PRESENCE \rightarrow PREDRILL : POOR PERFORMANCE \rightarrow LOSS MONEY \rightarrow MORE TIME

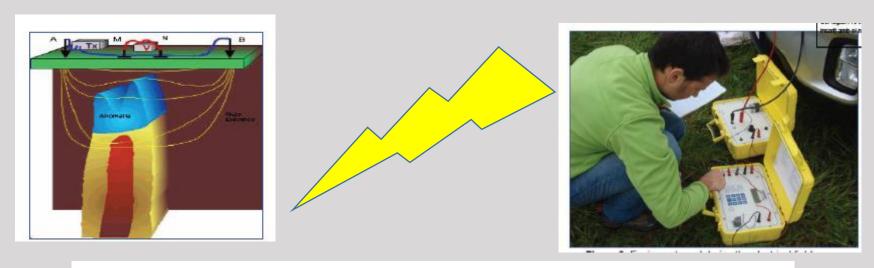
CAN BE EXPECTED WITH THE GEOTECHNICAL SURVEY

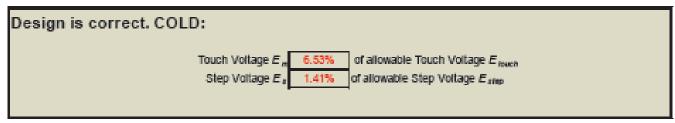

Geotechnical conditions prior knowledge will avoid surprises

MW price increase depending in hardness soil conditions:

SOFT SOIL: Easy for the EPC to drive piles at the stimated depth

MEDIUM SOIL: It is feasible to drive piles into the soil, but there are some hard intermediate levels which piles needs to overtake and it supposes drecease piling rendiment


HARD SOIL: No feasible to drive piles into the soil due to the shallow hard rock depth, and it is necessary to carry out surface laid concrete founding blocs, predrilling ...



5 MW solar site development : Hard soil \rightarrow Increases the project up to 250.000 €

ELECTRICAL RESISTIVITY SURVEY

(earthing design)

HOT SITE \rightarrow EPR > 430 (650) V \rightarrow ADDITIONAL REQUIREMENT \rightarrow MORE EXPENSIVE Epr = earth potencial rise

CAN BE EXPECTED WITH THE RESISTIVITY SURVEY

Rho Thermal resistivity survey

Calculation of ampacities and maximum accepted cable temperatures have been done using a value of RHO =xx k·m·w⁻¹

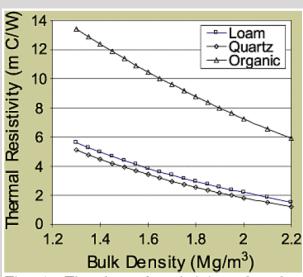
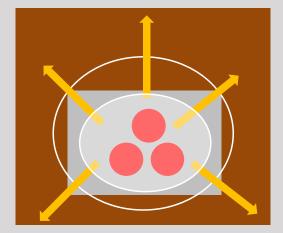
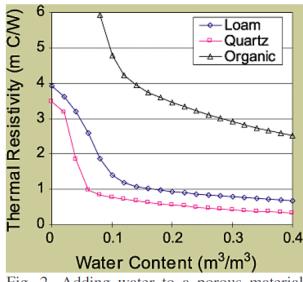
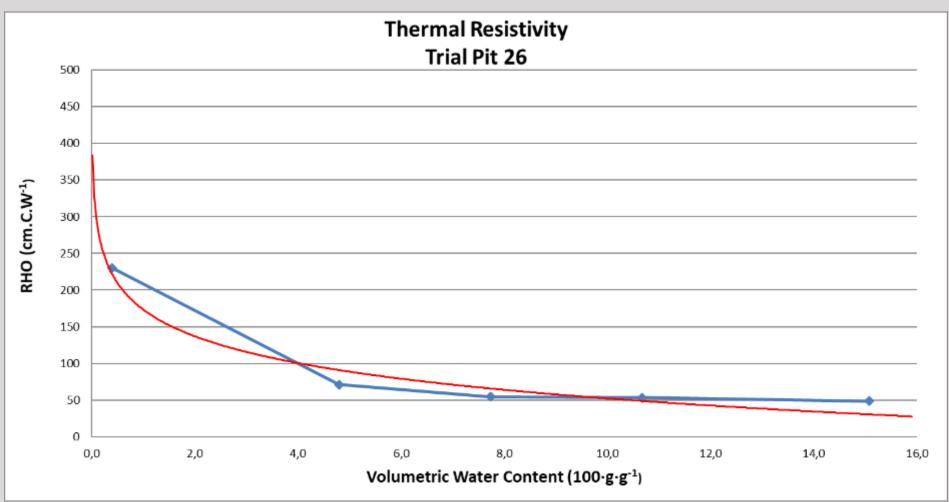



Fig. 1- The thermal resistivity of a dry, porous material is strongly dependent on its density.

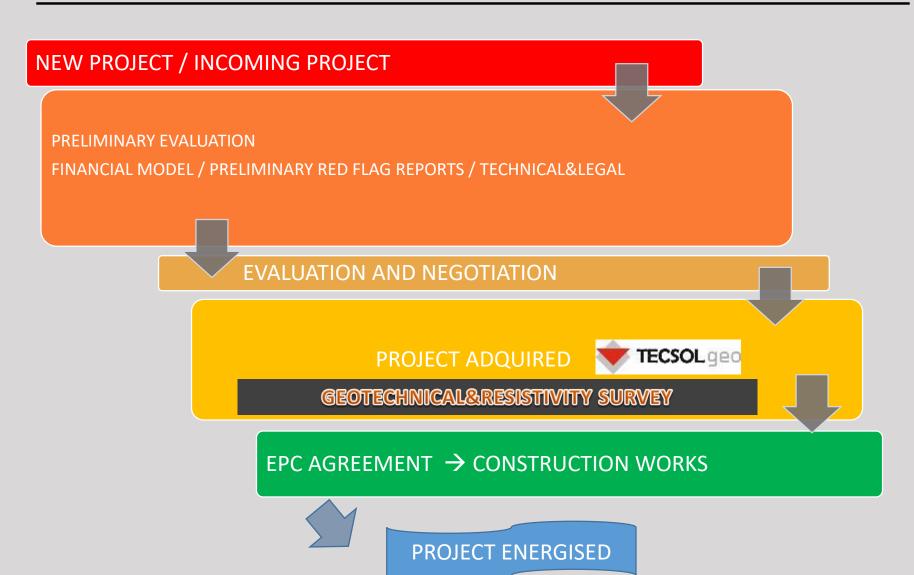
$$Rho = \frac{1}{\lambda}$$




Fig. 2- Adding water to a porous material drastically decreases its thermal resistance.

The water content depends on the season of the year So ...

Rho Thermal resistivity survey


Field test and lab test

< cable section >> save money

GEOTECHNICAL & RESISTIVITY SURVEY.. WHEN?.. WHY??

TECSOLGEO LTD

5. EQUIPMENTS AND SOIL TESTING DEVICES:

Dynamic Penetration Super Heavy (DPSH)

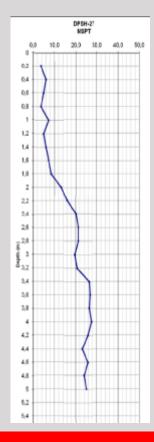
Boreholes (Drilled or Driven)

Dynamic Penetrometer Test - Panda Equipment (penetration and compactation)

Soil sampling and Lab testing

DCP - CBR In situ Testing

Electrical Tomography – Landfill Investigation


Resistivity Testing – Wener Array

Thermal test – RHO

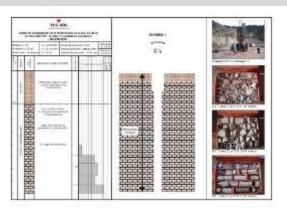
Others: Trial Pits, Corrosivity Tests, Plate Bearing Tests, GPR, ...

Dynamic Penetration Superheavy - DPSH

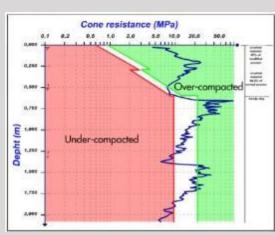
- Small Equipment
- Rubber tracks Suitable in moddy /flooded fields
- Non invasive (suitable in cultivated fields)
- Fast execution
- Up to 20 m (most common for PV 5 m)
- Self-propelled
- Carried in a Van
- DPSH test BS-EN ISO 22476:2005
- Resistance / Depth continuos Result
- Piling ramming correlaction
- Continuous Tests

GEOTECHNICAL SURVEY – GEOTECHNICAL SURVEY FOR SOLAR FARMS

-SIZE EQUIPMENT USED


Boreholes – Drilled or Driven

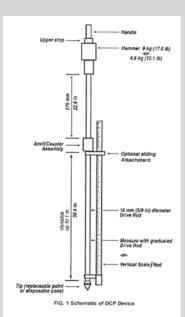
- Diferent equipment sizes
- Rubber tracks Suitable in moddy /flooded fields
- Non/few invasive
- Any depth required
- Self-propelled
- Continuous core –define layer boundaries
- Obtain undisturbed samples.
- Drilled/Driven depending soil composition/hardness
- Slower rate than penetration tests
- Core box stored



Panda: Penetration and compactation

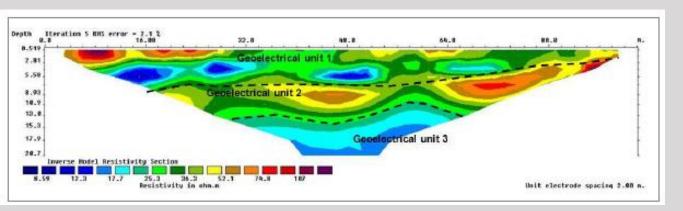
- Very Small Equipment
- All in a suitcase Portable in a plane
- Non invasive (suitable in cultivated fields)
- To be used in confined spaces
- Up to 5 m (most common for PV)
- Provides Results on site
- Resistance (Mpa)/Depth Results
- Direct correlation with SPT value
- Piling ramming correlaction
- Continuous Tests
- Also provide CBR % values
- Compactation Control NF XP P 94-105

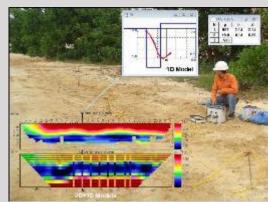
Laboratory tests quoted	YES	NO
Geomechanical		
Particle size distribution	✓	
Atterberg Limits	✓	
Density (dry/wet)	✓	
Moisture content	✓	
Expansivity (Lambe)		✓
UU Direct shear strength		~
Oedometric tests		✓
Chemical		
Sulphate content	✓	
Sulphide content	✓	
Organic matter	✓	
Chloride content	✓	
Electrical Conductivity	✓	
Carbonates	✓	
Potential Redox	✓	
рН	✓	
Double alcalinity (total and up to ph 8,3)		✓
Water agressiveness		✓
Baumann Gully		✓
Others:		



DCP - CBR In situ Testing

- DCP test devoted to in situ CBR measurement
- Very Small Equipment
- All in a suitcase Portable in a plane
- Non invasive (suitable in cultivated fields)
- To be used in confined spaces
- Cone driven untill desired depth (800 mm)
- CBR% value for every present layer
- New embankments /strengthening existing pavements
- Procedure according ASTM-D6951-3 (2003).
- Also concucted with Panda equipment described

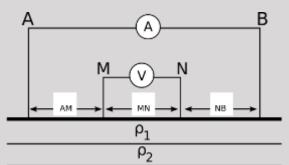




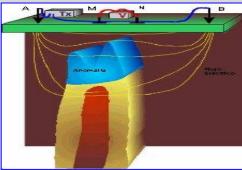
Electrical Tomography (ERT) - Landfill Investigation

- Geophysical Method

 Non destructive
- 2D high resolution soil underground representation
- Fully automated 1 Measurements in I time
- Combined with boreholes tunes interpretation
- Good Landfill detection untill 80-100 m depth
- Useful in old graveries, opencast mines, ...
- All suits in a suitcase Portable in a plane



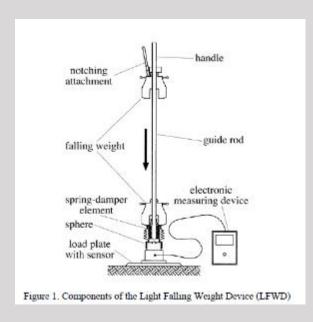
Resistivity Testing – Wenner Array


- Geophysical Method

 Non destructive
- Fully automated
- Suits in a suitcase Portable in a plane
- Measures the soil resistance (ohm.m)
- Establish Geoelectric soil layers model
- Critical factor in electrical ground design
- Soil measurement with Megger DET 2/2 device
- Accepted by Power distribution companies
- Wenner Array
- Data used for the earthing design

Some other tests and methods used

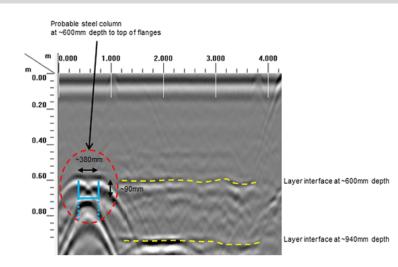
Trial pits



Soil Investigation and soil sampling
Allow to Establish Geotechnical and litological layers
Ground water level presence
3 meters depth investigation
Easy to find a contractor all over the world

Some other tests and methods used

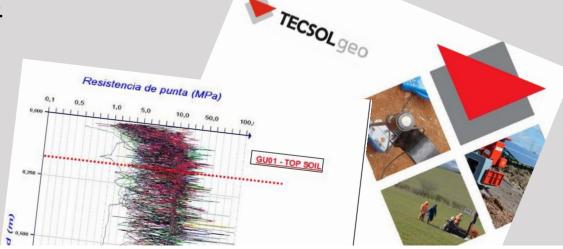
Dynamic Plate Test



method to determine dynamic modulus of subsoil and fills
Compaction control
Load-bearing subsoil capacity assessment
Comparison with the static one doesn't need and external reaction (loaded truck)
Provides Results on site directly on a screen
To be used in confined spaces

Some other tests and methods used

Ground Penetration Radar (GPR)



Geophysical Method – Non destructive
Uses radar pulses to image the subsurface
Uses electromagnetic radiation in the microwave band
Useful tool to identify buried pipes and structures alike or <u>bombs</u>.
Brings excellent results when good pipe-soil permitivity ratio are found

Finally, The report

- Geologycal report
- Geotechnical report
- Resistivity Thermal survey
- Hidrological
- Topo survey

Sorry, is not correct. The final step is not "the report", the final step is

THANK YOU VERY MUCH!!!

